Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38339125

RESUMEN

The leading cause of death for patients with Duchenne muscular dystrophy (DMD), a progressive muscle disease, is heart failure. Prostaglandin (PG) D2, a physiologically active fatty acid, is synthesized from the precursor PGH2 by hematopoietic prostaglandin D synthase (HPGDS). Using a DMD animal model (mdx mice), we previously found that HPGDS expression is increased not only in injured muscle but also in the heart. Moreover, HPGDS inhibitors can slow the progression of muscle injury and cardiomyopathy. However, the location of HPGDS in the heart is still unknown. Thus, this study investigated HPGDS expression in autopsy myocardial samples from DMD patients. We confirmed the presence of fibrosis, a characteristic phenotype of DMD, in the autopsy myocardial sections. Additionally, HPGDS was expressed in mast cells, pericytes, and myeloid cells of the myocardial specimens but not in the myocardium. Compared with the non-DMD group, the DMD group showed increased HPGDS expression in mast cells and pericytes. Our findings confirm the possibility of using HPGDS inhibitor therapy to suppress PGD2 production to treat skeletal muscle disorders and cardiomyopathy. It thus provides significant insights for developing therapeutic drugs for DMD.


Asunto(s)
Cardiomiopatías , Oxidorreductasas Intramoleculares , Lipocalinas , Distrofia Muscular de Duchenne , Animales , Humanos , Ratones , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Modelos Animales de Enfermedad , Mastocitos/metabolismo , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Miocardio/metabolismo , Pericitos/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(22): e2300284120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216530

RESUMEN

Mast cells play pivotal roles in innate host defenses against venom. Activated mast cells release large amounts of prostaglandin D2 (PGD2). However, the role of PGD2 in such host defense remains unclear. We found that c-kit-dependent and c-kit-independent mast cell-specific hematopoietic prostaglandin D synthase (H-pgds) deficiency significantly exacerbated honey bee venom (BV)-induced hypothermia and increased mortality rates in mice. BV absorption via postcapillary venules in the skin was accelerated upon endothelial barrier disruption resulting in increased plasma venom concentrations. These results suggest that mast cell-derived PGD2 may enhance host defense against BV and save lives by inhibiting BV absorption into circulation.


Asunto(s)
Venenos de Abeja , Prostaglandinas , Animales , Ratones , Mastocitos/metabolismo , Prostaglandina D2/metabolismo , Absorción Subcutánea , Oxidorreductasas Intramoleculares/metabolismo , Alérgenos
3.
RSC Med Chem ; 13(12): 1495-1503, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36561070

RESUMEN

Degradation of hematopoietic prostaglandin D2 synthase (H-PGDS) by proteolysis-targeting chimeras (PROTACs) is expected to be important in the treatment of allergic diseases and Duchenne's muscular dystrophy. We recently reported that PROTAC(H-PGDS)-7 (PROTAC1), which is composed of H-PGDS inhibitor (TFC-007) and cereblon (CRBN) E3 ligase ligand (pomalidomide), showed potent H-PGDS degradation activity. Here, we investigated the structure-activity relationships of PROTAC1, focusing on the C4- or C5-conjugation of pomalidomide, in addition, the H-PGDS ligand exchanging from TFC-007 with the biaryl ether to TAS-205 with the pyrrole. Three new PROTACs were evaluated for H-PGDS affinity, H-PGDS degrading activity, and inhibition of prostaglandin D2 production. All compounds showed high H-PGDS degrading activities, but PROTAC(H-PGDS)-4-TAS-205 (PROTAC3) was slightly less active than the other compounds. Molecular dynamics simulations suggested that the decrease in activity of PROTAC3 may be due to the lower stability of the CRBN-PROTAC-H-PGDS ternary complex.

4.
J Med Chem ; 64(21): 15868-15882, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34652145

RESUMEN

Targeted protein degradation by proteolysis-targeting chimera (PROTAC) is one of the exciting modalities for drug discovery and biological discovery. It is important to select an appropriate linker, an E3 ligase ligand, and a target protein ligand in the development; however, it is necessary to synthesize a large number of PROTACs through trial and error. Herein, using a docking simulation of the ternary complex of a hematopoietic prostaglandin D synthase (H-PGDS) degrader, H-PGDS, and cereblon, we have succeeded in developing PROTAC(H-PGDS)-7 (6), which showed potent and selective degradation activity (DC50 = 17.3 pM) and potent suppression of prostaglandin D2 production in KU812 cells. Additionally, in a Duchenne muscular dystrophy model using mdx mice with cardiac hypertrophy, compound 6 showed better inhibition of inflammatory cytokines than a potent H-PGDS inhibitor TFC-007. Thus, our results demonstrated that in silico simulation would be useful for the rational development of PROTACs.


Asunto(s)
Médula Ósea , Descubrimiento de Drogas , Inhibidores Enzimáticos , Oxidorreductasas Intramoleculares , Lipocalinas , Animales , Humanos , Masculino , Ratones , Médula Ósea/enzimología , Cardiomegalia/metabolismo , Línea Celular Tumoral , Simulación por Computador , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Oxidorreductasas Intramoleculares/metabolismo , Ligandos , Lipocalinas/antagonistas & inhibidores , Lipocalinas/metabolismo , Ratones Endogámicos mdx , Simulación del Acoplamiento Molecular , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Proteolisis
5.
J Immunol ; 207(10): 2545-2550, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34615734

RESUMEN

Lipocalin-type PG D synthase (L-PGDS) has two roles: it can be a PGD synthase, or it can be a carrier protein of hydrophobic small molecules. In this study, we investigated the dual roles of L-PGDS in acute lung injury by using L-PGDS-deficient and point-mutated mice, which lack PGD2 producibility but maintain lipocalin ability. Hydrochloride (HCl) administration (0.1 M intratracheally for 6 h) caused hemorrhage and dysfunction in the wild-type (WT) mouse lung. These symptoms were accompanied by an increase in PGD2 production. Both deficiency and point mutation of L-PGDS aggravated the HCl-induced hemorrhage and dysfunction. Although both the gene modifications decreased PGD2 production, only L-PGDS-deficient mice, but not point mutation mice, lacked protein expressions of L-PGDS in the lungs. In the WT mice, HCl administration caused pulmonary edema, indexed as an increase in lung water content and protein leakage in bronchoalveolar lavage fluid. L-PGDS deficiency and point mutation similarly aggravated edema formation. HCl administration also stimulated mucin production and bronchoalveolar lavage fluid leukocyte infiltration in the WT mouse lungs. Of interest, L-PGDS deficiency, but not point mutation, exacerbated these manifestations. Consistently, only L-PGDS deficiency increased the mRNA expression of IL-33, which stimulates mucin production in the inflamed lung. These results show that L-PGDS attenuated HCl-induced acute lung injury progresses in two different ways: L-PGDS produced PGD2, which inhibited pulmonary edema formation, whereas its lipocalin ability decreased mucin formation and inflammatory cell infiltration in the inflamed lung.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/metabolismo , Prostaglandina D2/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Biochem Biophys Res Commun ; 569: 66-71, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34237429

RESUMEN

Prostaglandin D2 (PGD2), an endogenous somnogen, is a unique PG that is secreted into the cerebrospinal fluid. PGD2 is a relatively fragile molecule and should be transported to receptors localized in the basal forebrain without degradation. However, it remains unclear how PGD2 is stably carried to such remote receptors. Here, we demonstrate that the PGD2-synthesizing enzyme, Lipocalin-type prostaglandin D synthase (L-PGDS), binds not only its substrate PGH2 but also its product PGD2 at two distinct binding sites for both ligands. This behaviour implys its PGD2 carrier function. Nevertheless, since the high affinity (Kd = âˆ¼0.6 µM) of PGD2 in the catalytic binding site is comparable to that of PGH2, it may act as a competitive inhibitor, while our binding assay exhibits only weak inhibition (Ki = 189 µM) of the catalytic reaction. To clarify this enigmatic behavior, we determined the solution structure of L-PGDS bound to one substrate analog by NMR and compared it with the two structures: one in the apo form and the other in substrate analogue complex with 1:2 stoichiometry. The structural comparisons showed clearly that open or closed forms of loops at the entrance of ligand binding cavity are regulated by substrate binding to two sites, and that the binding to a second non-catalytic binding site, which apparently substrate concentration dependent, induces opening of the cavity that releases the product. From these results, we propose that L-PGDS is a unique enzyme having a carrier function and a substrate-induced product-release mechanism.


Asunto(s)
Dominio Catalítico , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/metabolismo , Prostaglandina D2/metabolismo , Prostaglandina H2/metabolismo , Animales , Sitios de Unión , Biocatálisis , Oxidorreductasas Intramoleculares/química , Oxidorreductasas Intramoleculares/genética , Cinética , Lipocalinas/química , Lipocalinas/genética , Espectroscopía de Resonancia Magnética , Ratones , Estructura Molecular , Mutación , Prostaglandina D2/química , Prostaglandina H2/química , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
7.
J Immunol Res ; 2021: 5591115, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33997056

RESUMEN

Tetranor-PGDM is a metabolite of PGD2. Urinary tetranor-PGDM levels were reported to be increased in some diseases, including food allergy, Duchenne muscular dystrophy, and aspirin-intolerant asthma. In this study, we developed a monoclonal antibody (MAb) and a competitive enzyme immunoassay (EIA) for measuring tetranor-PGDM. Spleen cells isolated from mice immunized with tetranor-PGDM were utilized to generate Ab-producing hybridomas. We chose hybridomas and purified MAb against tetranor-PGDM to develop competitive EIA. The assay evaluated the optimal ionic strength, pH, precision, and reliability. Specificity was determined by cross-reactivity to tetranor-PGEM, tetranor-PGFM, and tetranor-PGAM. Recovery was determined by spiking experiments on artificial urine. Optimal ionic strength was 150 mM NaCl, and optimal pH was pH 7.5. Metabolites other than tetranor-PGDM did not show any significant cross-reactivity in the EIA. The assay exhibited a half-maximal inhibition concentration (IC50) of 1.79 ng/mL, limit of detection (LOD) of 0.0498 ng/mL, and range of quantitation (ROQ) value of 0.252 to 20.2 ng/mL. The intra- and inter-assay variation for tetranor-PGDM was 3.9-6.0% and 5.7-10.4%, respectively. The linearity-dilution effect showed excellent linearity under dilution when artificial urine samples were applied to solid-phase extraction (SPE). After SPE, recovery of tetranor-PGDM in artificial urine averaged from 82.3% to 113.5% and was within acceptable limits (80%-120%). We successfully generated one monoclonal antibody and developed a sensitive competitive EIA. The established EIA would be useful for routine detection and monitoring of tetranor-PGDM in research or diagnostic body fluids.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Técnicas para Inmunoenzimas/métodos , Prostaglandina D2/análogos & derivados , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Femenino , Ratones , Modelos Animales , Prostaglandina D2/inmunología , Prostaglandina D2/metabolismo , Prostaglandina D2/orina , Reproducibilidad de los Resultados
8.
Sleep ; 44(8)2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-33609365

RESUMEN

Orexins/hypocretins are hypothalamic neuropeptides that promote and stabilize wakefulness by binding to the orexin receptor type-1 (OX1R) and type-2 (OX2R). Disruption of orexinergic signaling results in the sleep disorder narcolepsy in mice, rats, dogs, and humans. The orexin receptor antagonist suvorexant promotes sleep by blocking both OX1R and OX2R. Whereas suvorexant has been clinically approved for the treatment of insomnia because it is well tolerated in experimental animals as well as in human patients, a logical question remains as to why orexin receptor antagonists do not induce overt narcolepsy-like symptoms. Here we show that acute and chronic suvorexant promotes both rapid eye movement (REM) and non-rapid eye movement (NREM) sleep without inducing cataplexy in mice. Interestingly, chronic suvorexant increases OX2R mRNA and decreases orexin mRNA and peptide levels, which remain low long after termination of suvorexant administration. When mice are chronically treated with suvorexant and then re-challenged with the antagonist after a 1-week washout, however, cataplexy and sleep-onset REM (SOREM) are observed, which are exacerbated by chocolate administration. Heterozygous orexin knockout mice, with lower brain orexin levels, show cataplexy and SOREM after acute suvorexant administration. Furthermore, we find that acute suvorexant can induce cataplexy and SOREM in wild-type mice when co-administered with chocolate under stress-free (temporally anesthetized) conditions. Taken together, these results suggest that suvorexant can inhibit orexin synthesis resulting in susceptibility to narcolepsy-like symptoms in mice under certain conditions.


Asunto(s)
Cataplejía , Narcolepsia , Animales , Cataplejía/tratamiento farmacológico , Perros , Humanos , Ratones , Ratones Noqueados , Narcolepsia/tratamiento farmacológico , Antagonistas de los Receptores de Orexina/farmacología , Antagonistas de los Receptores de Orexina/uso terapéutico , Receptores de Orexina , Orexinas/uso terapéutico , Ratas
9.
ACS Med Chem Lett ; 12(2): 236-241, 2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33603969

RESUMEN

Although hematopoietic prostaglandin D synthase (H-PGDS) is an attractive target for treatment of a variety of diseases, including allergic diseases and Duchenne muscular dystrophy, no H-PGDS inhibitors have yet been approved for treatment of these diseases. Therefore, the development of novel agents having other modes of action to modulate the activity of H-PGDS is required. In this study, a chimeric small molecule that degrades H-PGDS via the ubiquitin-proteasome system, PROTAC(H-PGDS)-1, was developed. PROTAC(H-PGDS)-1 is composed of two ligands, TFC-007 (that binds to H-PGDS) and pomalidomide (that binds to cereblon). PROTAC(H-PGDS)-1 showed potent activity in the degradation of H-PGDS protein via the ubiquitin-proteasome system and in the suppression of prostaglandin D2 (PGD2) production. Notably, PROTAC(H-PGDS)-1 showed sustained suppression of PGD2 production after the drug removal, whereas PGD2 production recovered following removal of TFC-007. Thus, the H-PGDS degrader-PROTAC(H-PGDS)-1-is expected to be useful in biological research and clinical therapies.

10.
Front Pharmacol ; 12: 779821, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35310894

RESUMEN

The objective of this review is to evaluate the anti-dementia activities of saffron and its combination with Kampo medicine. The Kampo formula Kamiuntanto composed of 13 crude drugs is well known for its anti-dementia activity. A significant increase in choline acetyltransferase activity and mRNA levels were observed. Polygala radix was identified as the most essential component drug in Kamiuntanto, probably due to the saponins, tenuifolin, and sinapinic acid. Ginseng was also identified as an essential Kamiuntanto component in terms of its synergistic functions with Polygala radix. Saffron, which was recommended in the Bencao Gangmu for memory and dementia, and is used as an anti-spasmodic, anti-catarrhal, and sedative herbal drug. Saffron and its major constituent, crocin were shown to enhance learning-memory, non-rapid eye movement (rem) sleep, and inhibit depression and neuronal cell death due to strong anti-oxidant and anti-inflammation activities. In addition based on the epidemiological studies such as the treatment of sleeping disorders and the clinical trials of saffron for Alzheimer patients, we demonstrated the indirect and direct anti-dementia activities of crocin and saffron.

11.
Sleep ; 44(4)2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33175978

RESUMEN

STUDY OBJECTIVES: Excessive daytime sleepiness (EDS) is a frequent cause for consultation and a defining symptom of narcolepsy and idiopathic hypersomnia (IH). The associated mechanisms remain unclear. Lipocalin-type prostaglandin D synthase (LPGDS) is a plausible sleep-inducing candidate. This study is to compare cerebral spinal fluid (CSF) and serum LPGDS levels in patients group with hypersomnia of central origin, including those with narcolepsy type 1 (NT1) and type 2 (NT2) and IH, to those in healthy controls (Con). METHODS: Serum LPGDS, CSF LPGDS, and CSF hypocretin-1(Hcrt-1) levels were measured by ELISA in 122 narcolepsy patients (106 NT1 and 16 NT2), 27 IH, and 51Con. RESULTS: LPGDS levels in CSF (p = 0.02) and serum (p < 0.001) were 22%-25% lower in control subjects than in patients with EDS complaints, including NT1, NT2, and IH. In contrast to significant differences in CSF Hcrt-1 levels, CSF L-PGDS levels and serum L-PGDS were comparable among NT1, NT2, and IH (p > 0.05), except for slightly lower serum LPGDS in IH than in NT1 (p = 0.01). Serum L-PGDS correlated modestly and negatively to sleep latency on MSLT (r = -0.227, p = 0.007) in hypersomnia subjects. CONCLUSIONS: As a somnogen-producing enzyme, CSF/serum LPGDS may serve as a new biomarker for EDS of central origin and imply a common pathogenetic association, but would complement rather than replaces orexin markers.


Asunto(s)
Trastornos de Somnolencia Excesiva , Hipersomnia Idiopática , Narcolepsia , Humanos , Oxidorreductasas Intramoleculares , Lipocalinas , Polisomnografía
12.
J Nat Prod ; 83(11): 3424-3434, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33200924

RESUMEN

In the research on ellagitannin metabolism, two unique dehydroellagitannins, carpinins E (1) and F (2), bearing dehydrohexahydroxydiphenoyl (DHHDP) and hydrated biscyclohexenetrione dicarboxyl ester (HBCHT) groups, were isolated from young leaves of Carpinus japonica. Upon heating in H2O or treatment with pH 6 buffer at room temperature, 1 and 2 afforded the reduction product 3, isocarpinin A, with an (R)-hexahydroxydiphenoyl (HHDP) group, suggesting the occurrence of redox disproportionation of the (S)-DHHDP group. This was supported by the increase in production of 3 in the pH 6 buffer solution by coexistence of epigallocatechin-3-O-gallate (15), accompanied by oxidation of 15. In contrast, treatment of 1 and 2 with ascorbic acid yielded 4, carpinin A, with an (S)-HHDP group. Upon heating with ascorbic acid, the HBCHT group was also reduced to an (S)-HHDP group, and 2 was converted to 2,3;4,6-bis(S)-HHDP glucose. In leaves of C. japonica, the tannins 1 and 2 are dominant in young spring leaves, but compounds 3 and 4 become the major components of tannins in mature leaves. These results suggest that, in ellagitannin biosynthesis, oxidative coupling of the two galloyl groups first generates a DHHDP group, and subsequent reduction of DHHDP esters produces HHDP esters.


Asunto(s)
Betulaceae/química , Taninos Hidrolizables/química , Cromatografía Líquida de Alta Presión , Estructura Molecular , Oxidación-Reducción , Hojas de la Planta/química , Análisis Espectral/métodos
13.
Front Pharmacol ; 11: 1310, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973528

RESUMEN

Neuropathic pain is an intractable chronic pain condition that is mainly caused by allodynia. We had previously reported that intra-plantar administration of bergamot essential oil (BEO) containing an aromatic compound significantly suppressed partial sciatic nerve ligation (PSNL)-induced mechanical allodynia via opioid mu receptors in mice. However, it has also been reported that the inhalation of BEO reduced formalin-induced nociceptive responses. Therefore, we aimed to elucidate whether the analgesic action of BEO is mediated by olfactory stimulation through volatile components. In the current study, BEO was continuously administered with an osmotic pump during PSNL surgery, and the effects on mice behavior were examined pharmacologically using a double activity monitoring system, which can detect two-dimensional planar motion in a cage with an infrared beam sensor as well as active motion with a running wheel. Here, we report that the two-dimensional planar activity significantly increased in mice with PSNL in the light phase (from 8 o'clock to 20 o'clock) but not in the dark phase (from 20 o'clock to 8 o'clock) from the second day after surgery. However, this increase was not observed when BEO was continuously administered. The effect of BEO on the two-dimensional planar counts in mice with PSNL was antagonized by naloxone hydrochloride. Regarding the running wheel activity, the number of rotations decreased by PSNL in the dark phase from the 8th day after surgery. However, this was not apparent with BEO use. The effect of BEO on the number of rotations was also antagonized by naloxone hydrochloride. Furthermore, inhalation of BEO in PSNL mice did not affect mechanical allodynia or the two-dimensional planar motion or running wheel activities. These findings indicate that BEO exhibits an analgesic action, which is mediated by opioid receptors and not by the olfactory system.

14.
FASEB J ; 33(7): 8202-8210, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31018708

RESUMEN

The precise role of prostaglandin D (PGD)2 in allergic lung inflammation remains controversial. Here, we aimed to clarify the role of PGD2 in chronic allergic lung inflammation using hematopoietic PGD synthase (H-PGDS)-deficient mice. Repeated intranasal administration of ovalbumin (OVA) resulted in eosinophilic infiltration and mucin production in the lungs of wild type (WT) mice, leading to respiratory dysfunction. H-PGDS deficiency exacerbated these effects, which were accompanied by increased mRNA expression of TNF-α and eosinophil chemoattractants. The bronchial epithelium expressed both H-PGDS and TNF-α in the inflamed WT lung, and H-PGDS deficiency increased TNF-α expression further. In cultured bronchial tissue of WT mice, treatment with LPS elevated mRNA expression of TNF-α and eosinophil chemoattractants. H-PGDS deficiency promoted the expression of these factors, which was inhibited by treatment with PGD2 receptor, D prostanoid (DP) receptor agonist, or PGD2 metabolite 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2). Treatment with TNF-α receptor antibody inhibited eosinophil chemoattractant expression. In vivo, administration of DP agonist or 15d-PGJ2 inhibited OVA-induced allergic lung inflammation. Bronchial epithelial cell-derived PGD2 attenuated lung eosinophilic infiltration with chronic allergic inflammation; these phenomena are at least partly attributed to the inhibition of TNF-α production via DP activation or 15-deoxy-Δ12,14-PGJ2 signaling.-Maehara, T., Nakamura, T., Maeda, S., Aritake, K., Nakamura, M., Murata, T. Epithelial cell-derived prostaglandin D2 inhibits chronic allergic lung inflammation in mice.


Asunto(s)
Asma/metabolismo , Células Epiteliales/metabolismo , Pulmón/metabolismo , Neumonía/metabolismo , Prostaglandina D2/metabolismo , Transducción de Señal , Animales , Asma/inducido químicamente , Asma/genética , Enfermedad Crónica , Células Epiteliales/patología , Regulación de la Expresión Génica , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Lipopolisacáridos/toxicidad , Pulmón/patología , Ratones , Ratones Noqueados , Neumonía/inducido químicamente , Neumonía/genética , Prostaglandina D2/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
15.
Sci Rep ; 9(1): 1931, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760783

RESUMEN

Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) is responsible for the production of PGD2 in adipocytes and is selectively induced by a high-fat diet (HFD) in adipose tissue. In this study, we investigated the effects of HFD on obesity and insulin resistance in two distinct types of adipose-specific L-PGDS gene knockout (KO) mice: fatty acid binding protein 4 (fabp4, aP2)-Cre/L-PGDS flox/flox and adiponectin (AdipoQ)-Cre/L-PGDS flox/flox mice. The L-PGDS gene was deleted in adipocytes in the premature stage of the former strain and after maturation of the latter strain. The L-PGDS expression and PGD2 production levels decreased in white adipose tissue (WAT) under HFD conditions only in the aP2-Cre/L-PGDS flox/flox mice, but were unchanged in the AdipoQ-Cre/L-PGDS flox/flox mice. When fed an HFD, aP2-Cre/L-PGDS flox/flox mice significantly reduced body weight gain, adipocyte size, and serum cholesterol and triglyceride levels. In WAT of the HFD-fed aP2-Cre/L-PGDS flox/flox mice, the expression levels of the adipogenic, lipogenic, and M1 macrophage marker genes were decreased, whereas those of the lipolytic and M2 macrophage marker genes were enhanced or unchanged. Insulin sensitivity was improved in the HFD-fed aP2-Cre/L-PGDS flox/flox mice. These results indicate that PGD2 produced by L-PGDS in premature adipocytes is involved in the regulation of body weight gain and insulin resistance under nutrient-dense conditions.


Asunto(s)
Adipocitos/metabolismo , Resistencia a la Insulina , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/metabolismo , Obesidad/metabolismo , Prostaglandina D2/biosíntesis , Adipocitos/patología , Animales , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacología , Oxidorreductasas Intramoleculares/genética , Lipocalinas/genética , Ratones , Ratones Transgénicos , Obesidad/inducido químicamente , Obesidad/genética , Obesidad/patología , Prostaglandina D2/genética
16.
Front Cell Neurosci ; 12: 357, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30364224

RESUMEN

Injection of nanomolar amounts of prostaglandin D2 (PGD2) into the rat brain has dose and time-dependent somnogenic effects, and the PGD2-induced sleep is indistinguishable from physiologic sleep. Sleep-inducing PGD2 is produced in the brain by lipocalin-type PGD2 synthase (LPGDS). Three potential intracranial sources of LPGDS have been identified: oligodendrocytes, choroid plexus, and leptomeninges. We aimed at the identification of the site of synthesis of somnogenic PGD2 and therefore, generated a transgenic mouse line with the LPGDS gene amenable to conditional deletion using Cre recombinase (flox-LPGDS mouse). To identify the cell type responsible for producing somnogenic PGD2, we engineered animals lacking LPGDS expression specifically in oligodendrocytes (OD-LPGDS KO), choroid plexus (CP-LPGDS KO), or leptomeninges (LM-LPGDS KO). We measured prostaglandins and LPGDS concentrations together with PGD synthase activity in the brain of these mice. While the LPGDS amount and PGD synthase activity were drastically reduced in the OD- and LM-LPGDS KO mice, they were unchanged in the CP-LPGDS KO mice compared with control animals. We then recorded electroencephalograms, electromyograms, and locomotor activity to measure sleep in 10-week-old mice with specific knockdown of LPGDS in each of the three targets. Using selenium tetrachloride, a specific PGDS inhibitor, we demonstrated that sleep is inhibited in OD-LPGDS and CP-LPGDS KO mice, but not in the LM-LPGDS KO mice. We concluded that somnogenic PGD2 is produced primarily by the leptomeninges, and not by oligodendrocytes or choroid plexus.

17.
Neurosci Lett ; 686: 140-144, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30201309

RESUMEN

We previously showed that knockout mice of hematopoietic prostaglandin (PG) D synthase (H-PGDS) produce less PGD2 to exacerbate pentylenetetrazole (PTZ)-induced seizures. Here, we adopted a gain-of-function strategy and used transgenic mice that over-express human H-PGDS enzyme, to elucidate the role of overproduction of endogenous PGD2 in PTZ-induced seizures. H-PGDS-transgenic mice showed the elevated level of a urinary metabolite of PGD2, tetranor-PGDM, 3.3- and 2.8-fold higher than the wild-type littermates under the basal condition and after the PTZ administration, respectively, without significantly changing the urinary concentration of a PGE2-metabolite, tetranor-PGE2. The intensity of PTZ-induced seizures was decreased in H-PGDS-transgenic mice as evident by the increased seizure onset latency, and a decrease in total duration of generalized tonic-clonic seizures and a total number of EEG seizure spikes during the postictal period (84 s, 17 s, and 5.3/min, respectively), as compared to wild-type mice (53 s, 24 s, and 12.6/min, respectively). These results indicate that overproduction of endogenous PGD2 decreased PTZ-induces seizures.


Asunto(s)
Conducta Animal/efectos de los fármacos , Mutación con Ganancia de Función/efectos de los fármacos , Pentilenotetrazol/farmacología , Prostaglandina D2/análogos & derivados , Convulsiones/tratamiento farmacológico , Animales , Humanos , Ratones Noqueados , Ratones Transgénicos , Prostaglandina D2/farmacología , Convulsiones/fisiopatología
18.
Bioorg Med Chem ; 26(16): 4726-4734, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30121213

RESUMEN

Hematopoietic prostaglandin D synthase (H-PGDS) is one of the two enzymes that catalyze prostaglandin D2 synthesis and a potential therapeutic target of allergic and inflammatory responses. To reveal key molecular interactions between a high-affinity ligand and H-PGDS, we designed and synthesized a potent new inhibitor (KD: 0.14 nM), determined the crystal structure in complex with human H-PGDS, and quantitatively analyzed the ligand-protein interactions by the fragment molecular orbital calculation method. In the cavity, 10 water molecules were identified, and the interaction energy calculation indicated their stable binding to the surface amino acids in the cavity. Among them, 6 water molecules locating from the deep inner cavity to the peripheral part of the cavity contributed directly to the ligand binding by forming hydrogen bonding interactions. Arg12, Gly13, Gln36, Asp96, Trp104, Lys112 and an essential co-factor glutathione also had strong interactions with the ligand. A strong repulsive interaction between Leu199 and the ligand was canceled out by forming a hydrogen bonding network with the adjacent conserved water molecule. Our quantitative studies including crystal water molecules explained that compounds with an elongated backbone structure to fit from the deep inner cavity to the peripheral part of the cavity would have strong affinity to human H-PGDS.


Asunto(s)
Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/metabolismo , Agua/química , Sitios de Unión , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Enlace de Hidrógeno , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Oxidorreductasas Intramoleculares/genética , Ligandos , Lipocalinas/antagonistas & inhibidores , Lipocalinas/genética , Simulación de Dinámica Molecular , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Resonancia por Plasmón de Superficie , Termodinámica , Agua/metabolismo
19.
Proc Natl Acad Sci U S A ; 115(23): 6046-6051, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29784823

RESUMEN

Narcolepsy-cataplexy is a chronic neurological disorder caused by loss of orexin (hypocretin)-producing neurons, associated with excessive daytime sleepiness, sleep attacks, cataplexy, sleep paralysis, hypnagogic hallucinations, and fragmentation of nighttime sleep. Currently, human narcolepsy is treated by providing symptomatic therapies, which can be associated with an array of side effects. Although peripherally administered orexin does not efficiently penetrate the blood-brain barrier, centrally delivered orexin can effectively alleviate narcoleptic symptoms in animal models. Chronic intrathecal drug infusion through an implantable pump is a clinically available strategy to treat a number of neurological diseases. Here we demonstrate that the narcoleptic symptoms of orexin knockout mice can be reversed by lumbar-level intrathecal orexin delivery. Orexin was delivered via a chronically implanted intrathecal catheter at the upper lumbar level. The computed tomographic scan confirmed that intrathecally administered contrast agent rapidly moved from the spinal cord to the brain. Intrathecally delivered orexin was detected in the brain by radioimmunoassay at levels comparable to endogenous orexin levels. Cataplexy and sleep-onset REM sleep were significantly decreased in orexin knockout mice during and long after slow infusion of orexin (1 nmol/1 µL/h). Sleep/wake states remained unchanged both quantitatively as well as qualitatively. Intrathecal orexin failed to induce any changes in double orexin receptor-1 and -2 knockout mice. This study supports the concept of intrathecal orexin delivery as a potential therapy for narcolepsy-cataplexy to improve the well-being of patients.


Asunto(s)
Narcolepsia/tratamiento farmacológico , Orexinas/administración & dosificación , Orexinas/farmacología , Animales , Encéfalo/fisiología , Cataplejía/tratamiento farmacológico , Cataplejía/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Orexinas/metabolismo , Sueño/efectos de los fármacos , Trastornos del Sueño del Ritmo Circadiano/tratamiento farmacológico , Trastornos del Sueño del Ritmo Circadiano/metabolismo , Vigilia/efectos de los fármacos
20.
J Pathol ; 244(1): 84-96, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29124765

RESUMEN

Endothelial cells (ECs) are a key component of the tumor microenvironment. They have abnormal characteristics compared to the ECs in normal tissues. Here, we found a marked increase in lipocalin-type prostaglandin D synthase (L-PGDS) mRNA (Ptgds) expression in ECs isolated from mouse melanoma. Immunostaining of mouse melanoma revealed expression of L-PGDS protein in the ECs. In situ hybridization also showed L-PGDS (PTGDS) mRNA expression in the ECs of human melanoma and oral squamous cell carcinoma. In vitro experiments showed that stimulation with tumor cell-derived IL-1 and TNF-α increased L-PGDS mRNA expression and its product prostaglandin D2 (PGD2 ) in human normal ECs. We also investigated the contribution of L-PGDS-PGD2 to tumor growth and vascularization. Systemic or EC-specific deficiency of L-PGDS accelerated the growth of melanoma in mice, whereas treatment with an agonist of the PGD2 receptor, DP1 (BW245C, 0.1 mg/kg, injected intraperitoneally twice daily), attenuated it. Morphological and in vivo studies showed that endothelial L-PGDS deficiency resulted in functional changes of tumor ECs such as accelerated vascular hyperpermeability, angiogenesis, and endothelial-to-mesenchymal transition (EndMT) in tumors, which in turn reduced tumor cell apoptosis. These observations suggest that tumor cell-derived inflammatory cytokines increase L-PGDS expression and subsequent PGD2 production in the tumor ECs. This PGD2 acts as a negative regulator of the tumorigenic changes in tumor ECs. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Inhibidores de la Angiogénesis/metabolismo , Carcinoma de Células Escamosas/patología , Oxidorreductasas Intramoleculares/genética , Lipocalinas/genética , Melanoma/patología , Neoplasias/prevención & control , Prostaglandina D2/metabolismo , Animales , Apoptosis , Permeabilidad Capilar , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica , Neovascularización de la Córnea , Citocinas/metabolismo , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal , Femenino , Humanos , Melanoma/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores Inmunológicos/antagonistas & inhibidores , Receptores de Prostaglandina/antagonistas & inhibidores , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...